

Precision Electroweak Results [& Searches for New Physics] at CDF

1/19

David Waters, University College London for the CDF Collaboration

- * Performance of the Tevatron/CDF.
- * W & Z Cross Section Measurements.
- **★** Drell–Yan Physics.
- * Taus.
- * "R" and the Width of the W.
- ★ Di-boson Production.
- $\bigstar M_w$ and Γ_w Combined Results.
- * Conclusions.

CDF Run 2 Detector:

- Largely new detector.
- → New trigger system : displaced tracks, taus, etc.
- Data handling : ≈ 0.5 PetaBytes/year processed and analysed.

Tevatron Performance

2/19

- *Accelerator performance in 2004 is excellent. "Design goals" surpassed.
- *Peak luminosity $6.1 \times 10^{31} \text{cm}^{-2} \text{s}^{-1}$ (5th Feb '04)
- ★CDF takes data with efficiency > 85%.
- ★Beam conditions good : silicon is typically integrated for the entire store.

CDF now collects $\sim 1 \text{pb}^{-1}/\text{day}$:

Process	Events/Week
$t \overline{t}$	50
$W \rightarrow e \nu_e$	18,000
$Z \rightarrow e^+ e^-$	1700
WW	90
$W \gamma \rightarrow e \nu \gamma \text{ (high-p_T \gamma)}$	130
$g g \rightarrow H (M_H = 115 \text{ GeV})$	6

$\sigma \times \mathbf{BR}(\mathbf{W} \to \mathbf{I} \mathbf{v})$

3/19

$$\sigma \times BR(W{\rightarrow}~e\nu)~=~2.64\pm0.01_{_{STAT}}\pm0.09_{_{SYST}}\pm0.16_{_{LUM}}~pb$$

$$\sigma \times BR(W{\rightarrow}~\mu\nu)~=~2.64\pm0.02_{_{STAT}}\pm0.12_{_{SYST}}\pm0.16_{_{LUM}}~pb$$

Backgrounds (QCD, W $\rightarrow \tau \nu$, Z, cosmics) : 6% (e), 11% (μ).

Important systematics: PDF's, Energy Scales, Material Description

$\sigma \times BR(Z \rightarrow l^+l^-)$

4/19

Very low backgrounds (QCD, Z→ττ, cosmics) : < 1% Important systematics : PDF's, Material Descriptions

$$\begin{split} \sigma \times BR(Z \rightarrow ee) &= 267.0 \pm 6.3_{_{STAT}} \pm 15.2_{_{SYST}} \pm 16.0_{_{LUM}} \, pb \\ \\ \sigma \times BR(Z \rightarrow \mu\mu) &= 246 \pm 6_{_{STAT}} \pm 12_{_{SYST}} \pm 15_{_{LUM}} \, pb \end{split}$$

Extended measurements of $\sigma(W)$ & $\sigma(Z)$ are well advanced

Drell-Yan Measurements

$$A_{\mathit{FB}} = \frac{\sigma \left(\cos\vartheta > 0\right) - \sigma \left(\cos\vartheta < 0\right)}{\sigma \left(\cos\vartheta > 0\right) + \sigma \left(\cos\vartheta < 0\right)}$$

- $st \sim$ Production properties : eventually feed into precision measurements (M_w)
- $≈ |η^e| < 3.0$: using full detector coverage
- \star extract quark, lepton couplings & $\sin^2 \vartheta_w$
- * sensitive to new physics

Searches in Dilepton Events

Taus

7/19

<u>Triggers:</u>

Reconstruction:

- \star Count tracks in τ -cone (10°) and require no tracks in isolation cone (30°)
- \nearrow Reconstruct π^0 candidates in shower max detector
- ★ Require combined mass to be < 1.8 GeV

$$\star$$
 τ→hadrons
• $|\eta|<1.0$
• $E_T>25$ GeV
• missing- $E_T>25$ GeV

Backgrounds: ~ 25%

Systematics : τ ID, bkgnd, PDF's & e–scales

Taus

8/19

 g_{τ}^{W} / g_{e}^{W}

Comparison with electron channel (taking care to cancel as many systematics as possible) provides a test of lepton universality

First look at $Z \rightarrow \tau\tau$:

CDF Run 2 Preliminary (72 pb⁻¹)

- *These measurements are providing a benchmark for analysis of events containing τ leptons.
- ★Very exciting to apply techniques to exotics searches, especially Higgs and SUSY.

Cross-Section Ratio

$$R = \frac{\sigma_W \times BR(W \to l \nu)}{\sigma_Z \times BR(Z \to l^+ l^-)} = 10.54 \pm 0.18(\text{stat.}) \pm 0.33(\text{syst.})$$

*****e, μ combined

*correlated systematics fully taken into account

Cross-Section Ratios

 $W+\gamma$

$W+\gamma$

12/19

- \star First select $W \rightarrow lv$ events:
 - \rightarrow Electrons : $E_T > 25$ GeV; missing- $E_T > 25$ GeV
 - → Muons : E_T >20 GeV; missing– E_T >20 GeV
- ★ Then look for additional photons:
 - ightharpoonup E_T(photon) > 7 GeV
 - $\rightarrow |\eta^{\gamma}| < 1.1$
 - $\Delta R(1,\gamma) > 0.7$

$$\sigma(\mathbf{W}\gamma) \times \mathbf{BR}(\mathbf{W} \rightarrow \mathbf{l}\nu) = 17.2$$

$$\pm 2.2_{\text{STAT}} \pm 2.0_{\text{SYST}}$$

$$\pm 1.1_{\text{LUM}} \mathbf{pb}$$

★ For E_{T} (photon) > 7 GeV and $\Delta R(l,\gamma) > 0.7$: $\sigma(W\gamma) \times BR(W \rightarrow lv)$ (Theory) = 18.6 ± 1.3 pb

 \mathbf{Z} + γ

 \mathbf{Z} + γ

$$\begin{split} \sigma(\mathbf{Z}\gamma) \times \mathbf{BR}(\mathbf{Z} \rightarrow \mathbf{l}^{+}\mathbf{l}^{-}) &= \mathbf{5.8} \\ &\pm \mathbf{0.8}_{\text{STAT}} \pm \mathbf{0.3}_{\text{SYST}} \\ &\pm \mathbf{0.4}_{\text{LUM}} \ \mathbf{pb} \end{split}$$

★ For E_T(photon) > 7 GeV and $\Delta R(l,\gamma) > 0.7$: $\sigma(Z\gamma) \times BR(Z \rightarrow l^+l^-)$ (Theory) = 5.3 ± 0.4 pb

- ★ Now V+ γ cross–sections well established, we are :
 - extending acceptance
 - optimising sensitivity to anomalous couplings and new physics
 - testing the Standard Model in ways unique to the Tevatron (e.g. observing the radiation amplitude zero in W+γ production).

WW

- ★ Two isolated $E_T>20$ GeV leptons (e or μ).
- \star Missing- $E_{_{\rm T}}$ > 25 GeV.
- ★ Remove events consistent with Z decay.
- ★ Remove top background by requiring no additional jets.
- * Remove fakes by requiring opposite sign.

N (background)	2.34 ± 0.38
N (WW signal)	6.89 ± 1.53
N (data)	5

$$\sigma(WW) = 5.1^{+5.4}_{-3.6} \text{ (stat)} \pm 1.3 \text{ (syst)} \pm 0.3 \text{ (lum) pb}$$

$$\sigma(WW)(\text{theory}) = 13.25 \pm 0.25 \text{ pb}$$

 $\mathbf{W}\mathbf{W}$

16/19

- eμ channel has little Standard Model background
- **Signal/Background** ≈ 4

Run 155364 Event 3494901 : $WW \rightarrow e^+\nu_e\mu^-\bar{\nu}_\mu$ Candidate

$$p_T(e) = 42.0 \; {\rm GeV/c}; \ \ p_T(\mu) = 20.0 \; {\rm GeV/c}; \ \ M_{e\mu} = 81.5 \; {\rm GeV}$$

$$E_T = 64.8 \text{ GeV}; \quad \Phi(E_T) = 1.6$$

 $\Delta\Phi(E_T, \text{lepton}) = 1.3; \quad \Delta\Phi(e, \mu) = 2.4; \quad \text{Opening-Angle}(e, \mu) = 2.6$

Run I: Combined W Mass & Width

17/19

 $\Gamma_W^{\text{Tevatron}} = 2.102 \pm 0.106 \text{ GeV}$

 $\chi^2/DoF: 0.3 / 1$

 $\Gamma_{\cdots}^{\text{Tevatron}} = 2.135 \pm 0.050 \text{ GeV}$

Precision Measurements in Run II

18/19

CDF alone with 2 fb⁻¹

- $\star \Delta M_{\rm w} \approx 40 \ {\rm MeV}$
- $\star \Delta M_{top} \approx 3 \text{ GeV}$
- Similar to all current direct measurement data combined.
- *With a Higgs discovery at Tevatron or LHC, these measurements will provide a powerful consistency test of the Standard Model.
- ★ Could provide first evidence of what lies beyond the SM.
- ★ Will be improved at LHC, but not quickly or easily.

Conclusions

- ★ Tevatron and CDF are running very well.
- ★ We have measured the cross sections for many electroweak processes in Run II, some with high precision.
- ★ These measurements have set the standard for various techniques that will be applied across CDF, especially in the search for physics beyond the Standard Model:
 - lepton ID (especially taus)
 - understanding of detector
 - understanding of backgrounds
- ★ Many electroweak measurements (esp. di-boson production) will soon become precise measurements, and are being optimised for :
 - anomalous coupling extraction
 - sensitivity to new physics contributions
- *Work is well under way on Run II measurements of M_w , Γ_w , asymmetries, couplings, ...